Defective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice.

نویسندگان

  • P A Slesinger
  • M Stoffel
  • Y N Jan
  • L Y Jan
چکیده

Stimulation of inhibitory neurotransmitter receptors, such as gamma-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has mutated GIRK2 channels and shows abnormal development. To understand how the function of GIRK2 channels differs in these two mutant mice, we compared the G protein-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from Girk2 null mutant and weaver mutant mice with those from wild-type mice. Activation of GABAB receptors in wild-type granule cells induced an inwardly rectifying K+ current, which was sensitive to pertussis toxin and inhibited by external Ba2+ ions. The amplitude of the GABAB receptor-activated current was severely attenuated in granule cells isolated from both weaver and Girk2 null mutant mice. By contrast, the G protein-gated inwardly rectifying current and possibly the agonist-independent basal current appeared to be less selective for K+ ions in weaver but not Girk2 null mutant granule cells. Our results support the hypothesis that a nonselective current leads to the weaver phenotype. The loss of GABAB receptor-activated GIRK current appears coincident with the absence of GIRK2 channel protein and the reduction of GIRK1 channel protein in the Girk2 null mutant mouse, suggesting that GABAB receptors couple to heteromultimers composed of GIRK1 and GIRK2 channel subunits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2.

G protein-gated, inwardly rectifying K+ channels (GIRK) are effectors of G protein-coupled receptors for neurotransmitters and hormones and may play an important role in the regulation of neuronal excitability. GIRK channels may be important in neurodevelopment, as suggested by the recent finding that a point mutation in the pore region of GIRK2 (G156S) is responsible for the weaver (wv) phenot...

متن کامل

The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells.

The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the substantia nigra. Recent genetic studies indicate that the GIRK2 gene is altered in weaver. This gene codes for a G-protein-activated, inwardly rectifying K+ channel protein (8). The mutation results in a single amino acid substitution (glyc...

متن کامل

Functional Effects of the Mouse weaver Mutation on G Protein–Gated Inwardly Rectifying K+ Channels

The weaver mutation corresponds to a substitution of glycine to serine in the H5 region of a G protein-gated inwardly rectifying K+ channel gene (GIRK2). By studying mutant GIRK2 weaver homomultimeric channels and heteromultimeric channels comprised of GIRK2 weaver and GIRK1 in Xenopus oocytes, we found that GIRK2 weaver homomultimeric channels lose their selectivity for K+ ions, giving rise to...

متن کامل

Functional Analysis of the weaver Mutant GIRK2 K+ Channel and Rescue of weaver Granule Cells

In the neurological mutant mouse weaver, granule cell precursors proliferate normally in the external germinal layer of the cerebellar cortex, but fail to differentiate. Granule neurons purified from weaver cerebella have greatly reduced G protein-activated inwardly rectifying K+ currents; instead, they display a constitutive Na+ conductance. Expression of the weaver GIRK2 channel in oocytes co...

متن کامل

Inhibition of caspases protects cerebellar granule cells of the weaver mouse from apoptosis and improves behavioral phenotype.

The homozygous mouse mutant weaver exhibits a massive loss of cerebellar granule neurons postnatally. The death of these cells is associated with a single amino acid mutation in the G protein-activated inwardly rectifying potassium channel, Girk2. Evidence suggests that both the mutated Girk2 channel and the calcium channel-associated N-methyl-d-aspartate receptor play important roles in the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 22  شماره 

صفحات  -

تاریخ انتشار 1997